Mikrobenzirkus

Von Mikroben und Menschen


2 Kommentare

Froschschleim hilft gegen Grippeviren

17-04-18-frosch

Der Frosch (Hydrophylax bahuvistara) produziert in seinem Hautsekret ein Peptid, das Grippeviren zerstören kann. (Foto: Sanil George & Jessica Shartouny)

Die kolumbianischen Chocó-Indianer benutzen das Gift (Batrachotoxin) des Schrecklichen Pfeilgiftfroschs für ihre tödlichen Blasrohrpfeile. Aber Froschsekrete können noch viel mehr. Für die schleimigen Hautabsonderungen der Frösche interessiert sich die Wissenschaft schon seit einiger Zeit. Und das aus gutem Grund. Hier ruhen vielleicht noch unentdeckte Schätze für die Entwicklung neuer Medikamente mit nützlichen Effekten für den Menschen. Ein farbenfroher indischer Frosch könnte der Medizin vielleicht ein wirksames neues Mittel gegen die Grippe (Influenza) liefern.

Neue Medikamente aus dem Arzneischrank der Natur

Influenza_Virus

Die Grippe ist immer noch eine der häufigsten und schwerwiegendsten Atemwegsinfektionen weltweit. Drei bis fünf Millionen Fälle gibt es jede Saison. Bis zu 500.000 Menschen sterben jährlich an der Erkrankung. Gegen die saisonale Grippe kann meist eine Impfung schützen. Wenn unvorhergesehen eine Influenza-Pandemie ausbricht, kann es komplizierter werden. Es dauert typischerweise mehrere Monate bis ein passender Impfstoff in ausreichender Menge produziert werden kann. Dann sind antivirale Medikamente das erste Mittel der Wahl. Hier kommen aber andere Probleme ins Spiel: Die Grippeviren entwickeln schnell Resistenzen gegen die gängigen Wirkstoffe. Die Forscher müssen daher dringend neue antivirale Mittel entwickeln. Um dies zu erreichen, suchen sie nach schon in der Natur vorhandenen Wirkstoffen, im speziellen nach Peptiden der angeborenen Immunabwehr.

Jetzt hat eine Forschergruppe um Joshy Jacob von der Emory University in Atlanta im Hautsekret der indischen Froschart Hydrophylax bahuvistara ein solches Sekret untersucht – mit überraschenden Ergebnissen. Im Froschschleim kommt ein bestimmtes Peptid vor, welches Grippeviren unschädlich machen kann.

Wirksam gegen zahlreiche Grippe-Stämme

Die chemischen Analysen ergaben, dass das Hautsekret des Frosches einen Cocktail aus 32 verschiedenen Abwehrpeptiden enthält. Peptide sind kurze Aminosäureketten, die von vielen Tieren und auch von uns Menschen produziert werden, mit der Fähigkeit, Bakterien oder Viren zu beschädigen oder zu zerstören – sie bieten sich daher als Ausgangspunkt für eine Suche nach neuen antiviralen Mitteln an.

Das neu entdeckte Peptid mit der aggressiven Wirkweise wurde „Urumin“ getauft. So heißt in Indien eine gefürchtete traditionelle Waffe, die ursprünglich wie auch der Frosch aus dem Süden Indiens kommt. Es handelt sich um eine Kombination aus Peitsche und Schwert – statt Leder sind beim Urumin die Riemen aus flexiblem, sehr dünnem Metall.

Was passiert genau? Noch ist der Wirkmechanismus des Peptids noch nicht vollends aufgedeckt. Es bindet offenbar ein virales Oberflächenprotein, welches in vielen Grippevirenstämmen vorkommt. So kann das Virus nicht mehr in die Zelle gelangen und wird anschließend getötet. Das neuentdeckte Peptid ist hochgradig wirksam – und das gleich gegen zahlreiche alte und neue Stämme des H1-Influenza-Virus. So beschrieben in der Fachzeitschrift „Immunity“.

Immer einen Frosch in der Tasche?

Solltest du dir bei Grippe nun einfach einen indischen Frosch unter die Nase binden? Nein – das würde nichts bringen? Bis zum wirksamen Medikament ist es noch ein weiter Weg.
Damit das Peptid eine Grundlage für ein Grippeschutzmittel liefern kann, müssen noch viele weitere Tests durchgeführt werden. Derzeit wirkt die Substanz lediglich bei menschlichen Zellen und Mäusen unter Laborbedingungen. Viele Wirkstoffstudien stellen sich später beim Menschen als ungeeignet heraus. Aber die Arbeit zeigt, dass in der systematischen Erforschung tierischer Substanzen ein großes Potenzial schlummern könnte.
Nach Ansicht der Wissenschaftler könnte dieses „Rezept der Natur“ zu einem neuen antiviralen Grippemittel weiterentwickelt werden. Weltweit gibt es mehr als 6000 verschiedene Froscharten und regelmäßig werden neue entdeckt -­ so wie etwa 2014 mitten in New York City.

Übrigens: Die Frösche tragen keinen großen Schaden davon. Zur Entnahme des Wirkstoffs bekommen sie leichte Elektroreize, wodurch die Schleimproduktion angekurbelt wird. Dieser wird entnommen und die Frösche werden wieder in die Freiheit entlassen.

#mikrobensindfreunde

Mikrobiologische Grüße

Susanne


Hinterlasse einen Kommentar

Tipps für Ostereier ohne Salmonellen

Zu Ostern gehören buntgefärbte Eier in den Nestern. Es macht Spaß, die Eier gemeinsam mit Kindern zu färben und zu bemalen. Um sie kreativ zu gestalten und an Zweige zu hängen, werden sie vorher ausgepustet. Kann man durch das Ausblasen roher Eier wirklich krank werden?

Durchfall und Bauchschmerzen durch Infektionen

Was viele Eltern unterschätzen: An den Eierschalen und im Inneren der Eier können gefährliche Krankheitserreger sitzen – die Salmonellen. Das sind Bakterien, die bei Menschen verschiedene Krankheiten im Magen–Darm-Bereich verursachen können. Nach dem Verzehr oder dem Kontakt mit den Eiern kann es zu Fieber, Durchfall, Übelkeit und Erbrechen kommen. Besonders gefährdet sind Babys, Kleinkinder, Senioren und Menschen, die aufgrund einer Vorerkrankung bereits ein geschwächtes Immunsystem haben. Die Angst vor den Krankheitserregern scheint aber neuerdings oft unbegründet zu sein, denn die Erreger sitzen seltener auf den rohen Eiern.

Seltener Salmonellen auf Eiern

egg-2189986_1920

In diesem Jahr gab das Landesuntersuchungsamt Rheinland- Pfalz rechtzeitig vor Ostern Entwarnung. Die Behörde meldete, dass auf rohen Eiern immer seltener Salmonellen festgestellt werden. Laut einer Mitteilung waren sämtliche seit Anfang 2012 untersuchten rund 600 Stichproben negativ. Das heißt die gefährlichen Krankheitserreger wurden weder auf den Schalen noch in den Dottern nachgewiesen. Der Vergangenheit gehören die Salmonellen deshalb aber noch längst nicht an. Den Angaben zufolge wurden Sie bei Untersuchungen in anderen Bundesländern immer wieder mal nachgewiesen.

Tipps zum Eierausblasen:

Wer zu Ostern rohe Eier ausblasen möchte, sollte also trotzdem auf Nummer sicher gehen und ein paar Hinweise beachten.

  • Nur frische Eier ausblasen.
  • Unbeschädigte Eier verwenden. Durch Risse und Defekte können Keime eindringen und sich vermehren.
  • Die Eier vor dem Ausbladen mit Wasser und Spülmittel abwaschen.
  • Zum Ausblasen einen dünnen Strohhalm verwenden, wahlweise eine Einwegspritze oder einen Miniblasebalg aus der Drogerie oder dem Bastelgeschäft verwenden.
  • Nach dem Ausblasen das Ei mit Wasser und Spülmittel durchspülen.

Wer das ausgeblasene Eigelb und Eiweiß noch essen möchte, sollte es bald zu Rührei und Co verarbeiten. Bis dahin sollte das rohe Ei bei einer Temperatur von unter sechs Grad Celsius gekühlt werden. Dann haben Keime kaum eine Chance, sich zu vermehren.

Selbst färben mit Pflanzenfarben

egg-2075087_1920

Wer mag kann seine Ostereier auch mit selbst hergestellten Pflanzenfarben einfärben. Zum Färben müssen die Pflanzen in einem halben Liter Wasser 10 Minuten gekocht werden. Anschließend die gekochten Eier etwa eine halbe Stunde in den Sud legen und zum Schluss mit einem Küchentuch Speiseöl auf die trockene Eierschale reiben. Dann glänzen sie wie Speck.

Farbvariationen:

  • Zwiebelschalen: Eine Handvoll ergibt braungelb bis goldbraune Eier
  • Kurkuma: Ein paar Teelöffel färben die Eier gelb
  • Matetee: Die Eier werden lindgrün im Aufguss
  • Rotkohl und Rote Beete: zaubert rote bis lilafarbene Eier
  • Weitere Pflanze Preiselbeeren(rosa), Holundersaft (bläulich) oder Kamillenblüten (gelb)

Kleine Geschichte des Ostereis

Der Ursprung des Ostereis ist nicht eindeutig geklärt. Es ist als Symbol des Lebens, der Reinheit und der Erneuerung.

animal-1867521_1920

Henne im Stall (Pixabay CC0)

In früheren Zeiten wurden die Ostereier der Frühlingsgöttin Ostara zum Opfer gebracht. Schon im 4. Jahrhundert wurden sie als Grabbeigabe in römisch-germanischen Gräbern gefunden. In der christlichen Tradition, die in Deutschland erstmals im frühen 13. Jahrhundert schriftlich erwähnt wurde, steht das Ei für die Auferstehung Jesu. Außen unscheinbar und tot, trägt es doch potenzielles Leben in sich. Die traditionelle Farbe für das Ei in der westlichen Welt ist seit dem 13. Jahrhundert Rot (Roteier), als die Farbe des Blutes Christi, des Lebens, der Lebensfreude. In Osteuropa gelten goldfarbene Eier als Zeichen der Kostbarkeit.

Es ist sehr wahrscheinlich, dass das Osterei auch aus praktischen Gründen populär geworden ist. Seit dem Mittelalter war während der Fastenzeit auch der Verzehr von Eiern verboten. Gleichzeitig legten die Hennen aber im Frühling mehr Eier.

Der Eierüberschuss wurde verwertet, gekocht und haltbar gemacht. In vielen Regionen wurde der Pachtzins damit beglichen. Die übriggebliebenen Eier wurden am Karsamstag traditionell eingefärbt und zum Weihen mit in die Kirche genommen. Diese Eier wurden dann als Geschenke verteilt oder auch später versteckt.

easter-2173193_1920

Frohe Ostern (Pixabay CC0)

Der Osterhase als Eierlieferant hat sich erst in den letzten Jahrzehnten durchgesetzt. In anderen Regionen brachten auch andere Tiere wie Fuchs, Kuckuck, oder der Storch die Ostereier.

Dann wünsche ich Euch viele bunte und gesunde Ostereier!


Hinterlasse einen Kommentar

Männergrippe ist kein Märchen!

kermit_cco-public-domain

Kermit hat der Männerschnupfen erwischt! Quelle: CCO Public Domain

Wir kennen es alle: Große und kleine kranke Männer sind wehleidig und fast dem Tode nah. Mit einem Männerschnupfen ist nicht zu spaßen! Da braucht es schon unsere gesammelte weibliche Aufmerksamkeit und Fürsorge, damit sich die Erkältung nicht sogar noch in etwas Schlimmeres oder das Ende der Menschheit wandelt. Wir Frauen denken dann oft: „So eine Mimose!“ Mit etwas Hühnersuppe und Streicheleinheiten lässt sich in der Regel aber jeder Todgeweihte wieder beruhigen.

Nun ist es aber eindeutig wissenschaftlich erwiesen und wir müssen wirklich umdenken: Männer leiden stärker, wenn es um eine Erkältung oder Grippe geht. Sie erkranken im Vergleich zu Frauen häufiger und schwerer an Infekten. Forscher der Universität Innsbruck haben einige Studien miteinander verglichen. Dabei kam heraus: Männer sind anfälliger für Viren und Bakterien. Nehmen wir das klassische Grippevirus heraus – erkranken in Europa mehr Männer als Frauen.

Schuld haben die Hormone

Eine Ursache für die Unterschiede könnten die unterschiedlichen Hormonhaushalte sein, die sich auf das Immunsystem auswirken. Es gibt viele Faktoren, die den Verlauf einer Erkältung beeinflussen – aber zu den größten Faktoren gehören tatsächlich die beiden Hormone Östrogen und Testosteron.
Forscher der Universität von Pennsylvania, Philadelphia, haben 2015 herausgefunden, dass Frauen ein besseres Immunsystem als Männer haben. Der Grund dafür, ist das zweite X-Chromosom. Mit entsprechenden Genen ausgestattet, unterstützt es die Immunabwehr besser als das männliche Y-Chromosom.

Warum ist das weibliche Immunsystem stärker?

chromosomen-_cco-public-domain_genetics-156404_1280

Jeder Mensch hat 23 Chromosomenpaare, die sich in jeder einzelnen Körperzelle wiederfinden. Chromosomen sind DNA-Bündel, die rund 2.000 Gene umfassen. Zusammen enthalten die 46 Chromosomen alle Informationen über den Organismus, zu dem sie gehören. Ein Chromosomenpaar besteht bei Männern aus einem X-Chromosom und einem Y-Chromosom, bei Frauen aus zwei X-Chromosomen. Diese Doppelung der X-Chromosomen ist laut der US-Forscher der Schlüssel zu der Überlegenheit des weiblichen Immunsystems. Denn das X-Chromosom enthält mehr für die Immunabwehr zuständige Gene als das Y-Chromosom. Die Konsequenz: Die B-Zellen und T-Zellen, wichtige Bestandteile des Immunsystems, werden bei Frauen stärker aktiviert.

Auch die Forscher der amerikanischen John Hopkins University in Baltimore haben herausgefunden, dass uns Frauen das weibliche Sexualhormon Östrogen vor Grippe schützt. Es wirkt offenbar antiviral gegen das Influenza-A-Virus. Bei Männern klappt das naturgemäß nicht. Bei Versuchen fanden die Wissenschaftler heraus, dass das weibliche Hormon Östrogen das Grippevirus daran hindert, sich in den Nasenzellen zu vermehren. So können sich die Grippeviren bei Frauen weniger schnell im Körper verbreiten.

Evolutionsgeschichtliche Hintergründe

Auch Ärzte halten die Hormonthese für plausibel. Der MDR-Fernseharzt Carsten Lekutat meint dazu:

„Es macht vom Körper her absolut Sinn ein starkes Leiden zu produzieren, damit der Mann sich in die Höhle legt, sich mit einem Fell zudeckt und nicht jagen geht und eine Herzmuskelentzündung riskiert.“

Evolutionsgeschichtlich haben Frauen wahrscheinlich mehr Östrogen und ein stärkeres Immunsystem, damit sie sich um die Pflege des Nachwuchses kümmern konnten.

Doch Frauen scheinen mit ihrem Immunsystem nicht nur von Haus aus besser gegen Grippe gerüstet zu sein: Wie Forscher an der Standford Universität Kalifornien 2013 herausfanden, wirken auch Grippeimpfungen bei Frauen besser als bei Männern. Demnach wurden bei Frauen nach der Impfung mehr Antikörper im Blut nachgewiesen. Grund ist der Testosteronspiegel: Je mehr Testosteron im Blut, desto geringer die Zahl der Antikörper.

Für Männer sind diese Erkenntnisse natürlich nun nicht nur für die Rechtfertigung für längere Krankschreibungen hilfreich. In Zukunft könnte eine künstliche Anhebung ihres Östrogen-Spiegels eine sinnvolle Alternative zu Antibiotika darstellen.

Was hilft gegen Männergrippe?

fruit_public-domain-634364_1920

Mit ein paar Tricks können aber auch Männer mit den starken Abwehrkräften einer Frau mithalten:

  1. Händewaschen, da Viren sich sehr gern über die Hände verbreiten.
  2. Gesunde Ernährung: Vitamine statt Süßigkeiten essen und Sport sorgen dafür, dass die Abwehrkräfte gestärkt sind
  3. Ein Geheimtipp Zink: das hilft noch besser als Vitamin C.

So hat die Männergrippe keine Chance.

Gute Besserung an alle Männer und Frauen, die die Grippewelle erwischt hat!

Mikrobiologische Grüße

Susanne

 


7 Kommentare

Mikroben-Party im Kühlschrank

Schön, dass ich bei dem Eisregen draußen hier drinnen sitzen und einen Blogartikel schreiben darf. Wer weiß schon genau, ob mich die Kälte oder die letzten Feiertage mit gutem Essen dazu inspirierten – heute soll es jedenfalls um den Kühlschrank gehen. Er darf natürlich als treuer Begleiter alle Köche und Gourmets in keiner Küche fehlen.

Aber habt ihr euch eigentlich mal genauer überlegt, warum wir ihn haben? Richtig! Er soll unsere Lebensmittel länger vor dem Verderben und Verschimmeln retten und dafür die Zahl der, immer hungrigen und gefrässigen, Bakterien und Pilze schön klein halten. Letztendlich haben wir ihn – wie auch den Tiefkühler, die Geschirrspülmaschine oder unsere Waschmaschine den Mikroben zu verdanken. Aber wie haben das unsere Vorfahren eigentlich mit dem Kühlen hinbekommen? Ein kurzer Rückblick in die Geschichte gefällig?

Wie alles begann: Die Geschichte des Kühlschranks

In der Zeit der Jäger und Sammler war das noch recht unkompliziert. Alle Nahrung, die Man(n) jagte oder Frau gesammelt hatte, wurde gleich verzehrt. Anspruchsvoller wurde es, als unsere Vorfahren sesshaft wurden. Wie konnte man Vorräte länger haltbar machen? In der Antike holten sich die cleveren Alpenbewohner einfach dazu Eisblöcke von den Bergen ins Haus. Auch Erdlöcher im Boden oder ein naheliegender See oder Teich wurden gern genutzt. Wer nicht gerade einen Gletscher in der Nähe hatte, musste schon etwas kreativer werden. Lange musste sich man sich mit anderen Konservierungsmethoden begnügen. Da wurde gepökelt, eingekocht, getrocknet und geräuchert. Ein beliebter Ort, um sich einen Lebensmittelvorrat in Tongefäßen oder Holzfässern zu halten, war der Keller unter dem Haus.

„Mit Eis stopf‘ deine Keller voll, wenn dein Bier gelingen soll!“
Bayerischer Brauer- und Mälzerkalender,  Januar 1880

Im 19. Jahrhundert entwickelte sich in den europäischen Großstädten ein richtiger Handel mit dem Eisblock. Aus Eisfabriken wurden riesige Eistangen in die großbürgerlichen Haushalte geliefert. Sie wurden in speziell dafür mit Dämmstoffen und Holz ausgerüstete Kisten gestellt. Die frischen Lebensmittel lagerte man einfach in deren Mitte. Noch heute werden in einigen deutschsprachigen Regionen die Kühlschränke deshalb als „Eisschränke“ oder „Eiskisten“ bezeichnet. Noch bis vor 50 Jahren wurde Stangeneis in Restaurants zur Getränkekühlung benutzt. Es wurde vom Eismann in einem Kühlhaus oder Eiskeller aufbewahrt, im Sommer ausgeliefert und auf Geschäfte und Haushalte verteilt.

eisschrank_stuttgart_ca1900_1_gemeinfrei

Eisschrank, Stuttgart um 1900 (Quelle: gemeinfrei)

Schon im Jahre 1748 stellte William Cullen die erste künstliche Kühlung an der Universität in Glasgow vor. Der erste chemische Kühlschrank wurde bereits 1834 kommerziell vermarktet und später (1859) durch Ferdinand Carré weiterentwickelt. Das war aber alles noch sehr teuer für den Normalbürger.

Erst durch einen elementaren Beitrag von Carl von Linde wurde 1876 eine technisch –chemische Kältemaschine, der Vorläufer des uns heute bekannten Kühlschranks, entwickelt. Das revolutionierte die privaten Haushalte. In den 1920er Jahren war der Kühlschrank in den USA schon ein Verkaufsschlager. Die Europäer setzten weiterhin noch auf ihre kühlen Aufbewahrungsorte. Der Kühlschrank feierte in Deutschland erst in den 1950er Jahren Erfolge, verzögert durch den Zweiten Weltkrieg.
Ab jetzt änderte sich die Hausarbeit nachhaltig. Tägliches Einkaufen war nicht mehr nötig. Bis dato war die meistverzehrteste Fleischsorte durchwachsender und gepökelter Speck. Jetzt veränderte der Kühlschrank den ganzen Speiseplan: Würstchen, exotisches Obst, kalte Platten, Buttercreme, Eier und Mayonnaise wurden in den 1960er Jahren immer beliebter.

Ökologische Nische Kühlschrank

Wer nun aber denkt, mit der Entwicklung des Kühlschranks wurde den Mikroben der Garaus gemacht – der irrt. Kälte killt keine Keime!
Der Kühlschrank ist nicht nur bei uns Zweibeinern der beliebteste und meistfrequentierte Ort in der Küche. Im Kühlschrank tummeln sich mehr als 11,4 Millionen Keime pro Quadratzentimeter – das fanden US-Forscher bereits vor Jahren heraus. Auf Toilettensitzen – die Bakterien zu trocken, zu kalt und zu gut geputzt sind – fanden sie im Gegenzug nur etwa 100 Erreger pro Quadratzentimeter.

„Wer Angst vor der Klobrille hat, sollte nichts mehr aus dem Kühlschrank essen“. Bonmot unter Hygienikern

Mikroorganismen sind sehr anpassungsfähig und besiedeln jede verfügbare Nahrungsquelle. Und da gibt es im Kühlschrank freie Lebensmittelauswahl: hier ein angeschimmelter Joghurt, dort ein vergessener Käse und im Gemüsefach ein in sich zusammenfallender Salat. Offene Milchquellen sind für Bakterien jedes Mal gleichzusetzten mit einer neuen Wohnung. Kommen noch ein paar Krümel und neue offen gelagerte Speisen dazu, komplettiert das den „All inclusive-Urlaub“.

Ganz heimtückische Gesellen im Kühlschrank sind zum Beispiel die kälteliebenden Listerien oder Yersinien, die sich auch problemlos bei Temperaturen unter der Null-Grenze vermehren und Magen-Darmerkrankungen oder Fieber beim immungeschwächten Menschen verursachen können.

Krankheitserreger wie Salmonellen oder Campylobacter überstehen auf rohem Fleisch z.B. auftauendes Tiefkühlhähnchen locker 2-3 Tage in einem typischen Studentenkühlschrank, in dem sich Flaschennahrung und Fertigpizza in großen Zeitzyklen abwechseln. Durch die Kälte sterben die Keime nicht ab, sondern wachsen nur langsamer. Wenn es dann wärmer wird, vermehren sie sich mit rasender Geschwindigkeit. Das Hauptproblem in den Kühlgeräten sind oft die mit über 8 Grad zu hoch eingestellten Temperaturen. Dieses Klima ist ein idealer Nährboden für Viren und Bakterien. Optimal laut TÜV sind für Lebensmittel 5 Grad.

Antibakterielle Oberflächen sind für Bakterien eher ein Witz und werden auch von den Gesundheitsämtern immer wieder angezweifelt.Besonders beliebt bei Bakterie & Co sind übrigens die Fächer, wo die Temperaturen etwas höher sind – die Gemüsefächer. Das enthüllte letztens eine südkoreanische Studie. Hier ist die Artenvielfalt ebenfalls höher als auf dem immer gerne zum Vergleich herangezogenen Toilettensitz. Deshalb sollte ungewaschenes Gemüse am besten auch immer verpackt in den Kühlschrank gelegt werden und das Fach regelmäßig ausgewischt werden.
Das ist auch die Haupthygieneregel im Kühlschrank zum Mitnehmen: Nichts offen lagern. Plastikdosen, Schraubgläser oder Folienhüte machen Keimen die Wanderung schwerer. Und abgelaufene oder verschimmelte Lebensmittel braucht man auch nicht weiter zu inkubieren.

Beim Putzen geht es nicht ums Überleben

Wusstet ihr, dass besonders viele der Winzlinge an der Kühlschrankinnenseite, der am seltensten geputzten Fläche im Haushalt leben? Und wenn wir schon beim Putzen sind. Hier noch ein paar Tipps!

Regelmäßiges Putzen mit einem Reiniger auf Seifenbasis oder heißem Essigwasser reicht vollkommen aus. Die Säure tötet Mikroorganismen ab. Desinfektionsmittel sind im Kühlschrank nicht nötig, sonst drohen andere Allergieprobleme. Wichtig ist aber, auch mal kräftig schrubben. Bakterien bilden gerne Biofilme, die nur mit Reiniger schlecht in Griff zu bekommen sind. Vergesst auch den Kühlschrankgriff nicht, der wird täglich mit allerlei Spuren an den Händen „begriffelt“.
Die Ablaufrinne im Kühlschrank verdient besondere Aufmerksamkeit. Dort leben etwa 11 Millionen Bakterien. Das Tauwasserablaufloch bekommt man prima mit einem Pfeifenreiniger sauber.
Und abschließend noch ein kleiner Tipp: Es ist auch nicht wahr, dass Bakterien bei -8 Grad sterben. Das nur, falls ihr glaubt, dass man die Gefrierschrankschubladen nicht ab und zu putzen muss.

Letztendlich geht es aber nicht darum, alle Keime auszuradieren, sondern, zwischen uns und den Mikroben eine gute gesunde Balance herzustellen. Also auf gute Nachbarschaft!

Mikrobiologische Grüße

Susanne 😉


Ein Kommentar

Rudolphs rote Nase mikrobiologisch erklärt – Merry Xmas!

rudolph-951494_1280_cco_public_domain

„Rudolph, the red-nosed reindeer had a very shiny nose. And if you ever saw it, you would even say it glows.“

Jedes Kind kennt „Rudolph“, das Rentier mit der roten Nase, aus dem Weihnachtslied, das Mitte des vergangenen Jahrhunderts populär wurde. Auch Bilderbücher machten es bekannt. Als rechte Hand des Weihnachtsmanns hilft es in jedem Jahr beim Geschenke austragen. Das fliegende Rentier zieht den schweren Santa-Claus- Schlitten an der Spitze. Dafür ist es bestens ausgerüstet mit einer anatomischen Besonderheit ­- einer glühend roten Nase. Damit findet es unbeirrbar den Weg durch Nacht und dichten Nebel.
Regelmäßig versuchen Forscher sich in der Weihnachtszeit an wissenschaftlichen Erklärungen für Rudolphs rote Leuchte. Was lässt die Nase so rot erstrahlen?

Rentier mit heißer Nase

Wissenschaftler aus Norwegen und den Niederlanden hatten eine Studie in der Weihnachtsausgabe 2012 der renommierten Medizin-Fachzeitschrift „British Medical Journal“ (BMJ) veröffentlicht. Bei einem Vergleich von Nasen von Rentieren und gesunden Menschen stellten sie fest, dass Rentiernase ein Viertel mehr Blutäderchen haben als menschliche Riechorgane. Damit enthalten die Nasen von Rentieren auch eine besonders große Menge an roten Blutkörperchen, die Sauerstoff transportieren können und den Tieren helfen, ihre Körpertemperatur zu kontrollieren.

rentier_coutesy-bmj_d76eeb43c115e989

Wärmeinfrarotbilder zeigen die rote Nase des Rentiers (Quelle: BMJ)

Fazit der Forscher: Rudolphs Nase ist also rot, weil sie besonders viele rote Blutkörperchen enthält und gut durchblutet ist. Dank des dichten Netzes an roten Blutkörperchen ist das Rentier „anatomisch und physiologisch“ geeignet, seinen Aufgaben als fliegender Begleiter des Weihnachtsmannes nachzukommen.
Zudem hätten Rentiere eine höhere Dichte von Schleimdrüsen in ihrem Riechorgan, die bei wechselnden Wetterbedingungen und extremen Temperaturen für ein „optimales Nasenklima“ sorgen und das Organ schützen würden. Wärmeinfrarotbilder zeigten, dass Rentiere tatsächlich rote Nasen haben. Eines tun Rentiere niemals – frieren. Dafür sind aber nicht nur rote Nasen sondern auch ihr Fell und ihre Hufe verantwortlich.

 

Rudolph mit Naseninfektion?

Vielleicht hat Rudolph auch nur Schnupfen oder ein Infektion? Im Jahre 1986 hatte der norwegische Biologe Odd Halvorsen dazu eine Erklärung im Fachjournal „Parasitology Today“ veröffentlicht. Er führte die rote Nase einfach auf Parasitenbefall zurück. Wie auch andere Wiederkäuer wird das Rentier von vielen Parasiten geplagt, darunter auch Stechmücken, Zungenwürmer oder Fliegenlarven. In den Nasenhöhlen von Rentieren gäbe es ein spezielles Nasenmikrobiom, über zwanzig einzigartige Mikroben, die im Ausnahmefall die Färbung verursachen könnten.

Oder biolumineszentes Rentier?

Wenn man Rudolphs rotes Riechorgan zum Schluss mikrobiologisch „beleuchtet“, sollte man ein eine bekanntes Phänomen, welches schon für den Tintenfisch aus Hawai (Euprymna scolopes) beschrieben wurde,  nicht außer Acht lassen. Sein Körper enthält das Leuchtorgan, einen Sack angefüllt mit biolumineszenten Bakterien (Vibrio fischeri). Diese symbiontische Beziehung bietet für die Bakterien ausgezeichnete Bedingungen, um sich zu vermehren. Wenn diese eine ausreichende Anzahl erreicht haben, beginnen sie zu leuchten. Den Prozess, durch den die Bakterien wissen, dass sie genug Mikroorganismen sind, bezeichnet man als quorum sensing. Die Bakterien „sprechen“ sozusagen miteinander indem sie besondere chemische Moleküle produzieren. Mehr Bakterien produzieren dementsprechend mehr davon – bis ein bestimmter Level erreicht ist, dann agieren die Bakterien zusammen.
Im Fall des Tintenfischs wird Licht produziert. Die langarmigen Räuber spüren mit der eingebauten Taschenlampe ihre Beute auf. Gleichzeitig tarnt das Licht die nächtlichen Jäger. Denn im hellem Mond- oder Sternenlicht verhindert es, dass der Tintenfisch einen Schatten wirft und dadurch für Fressfeinde sichtbar wird. Ganz praktisch!

„Then one foggy Christmas Eve, Santa came to say, Rudolph with your nose so bright, won’t you guide my sleigh tonight?“

Könnte der Grund für die leuchtend-rote Nase nicht also auch eine symbiontische Beziehung mit dem Bakterium (Vibrio rudolphii) sein, welche das Riechorgan mit seinem besonderen Nasenklima kolonisiert und durch quorum sensing am Heiligabend zum Leuchten bringt? Sollte man mal drüber nachdenken :-)…

Fröhliche Weihnachten! Merry Christmas!

 

Quellen:

Why Rudolph’s nose is red: observational study BMJ 2012; 345 doi: http://dx.doi.org/10.1136/bmj.e8311 (Published 17 December 2012) Cite this as: BMJ 2012;345:e8311, http://www.bmj.com/content/bmj/345/bmj.e8311.full.pdf

Epidemiology of reindeer parasites. Halvorsen Odd. Parasitol Today. 1986 Dec;2(12):334-9. https://www.ncbi.nlm.nih.gov/pubmed/15462756

 


5 Kommentare

Zehn Dinge, die Du über Antibiotika wissen solltest

Anlässlich der World Antibiotic Awareness Week (14.–20. November) und des Europäischen Antibiotika-Tages am 18. November gibt es auch hier ein paar wissenswerte Informationen zu Antibiotika und zum verantwortungsvollen Umgang mit diesen Medikamenten.

1. Antibiotika helfen bei bakteriellen Infektionen, wirken aber nicht gegen Viren.

Ein Antibiotikum ist ein Medikament, das Bakterien abtötet oder ihr Wachstum aufhält. Penicillin gehört zu dieser Medikamentengruppe und war eines der ersten Antibiotika. Durch Medikamente wie Antibiotika leben Menschen heute bis zu 40 Jahre länger als 1901.  Antibiotika und andere Arzneimittel sind, neben anderen Faktoren wie verbesserter Wasserqualität, Hygiene und Ernährung, ein Grund dafür, dass die Lebenserwartung in Deutschland deutlich gestiegen ist. Derzeit gibt es rund 80 verschiedene Antibiotika.

2. Die Entdeckung des Penicillins war ein Zufallsfund.

Am 28. September 1928 machte Alexander Fleming eine der wichtigsten Entdeckungen der Medizingeschichte. der Forscher kam an diesem Morgen in sein Labor uns sah, dass bei einem seiner Versuche etwas schiefgegangen war. Schimmel hatte sich in einer der Glasschalen ausgebreitet, die zu einem Experiment gehörten. Fleming wollte den Inhalt der Schale eigentlich vernichten. Aber er beobachtete, dass dort, wo sich der Schimmelpilz in der Bakterienkultur ausgebreitet hatte, keine Staphylokokken mehr wuchsen! Der Pilz produzierte also einen Stoff, der die Bakterien zerstört. Diesen Stoff nannte er Penicillin, in Anlehnung an den lateinischen Namen des Schimmelpilzes. Fleming hatte also ein Mittel gegen bakterielle Erkrankungen gefunden.
Es dauerte allerdings noch einige Jahre, bis die ersten Patienten Penicillin einnehmen. Erst zwölf Jahre später, 1940, gelang es den Wissenschaftlern Howard Florey und Ernst Chain, reines Penicillin aus Schimmelpilzen zu gewinnen und an Tieren und Menschen zu testen. Das war eine Sensation, ein solches Medikament hatte es bis dahin noch nicht gegeben. Viele Menschen waren deshalb an Krankheiten wie Tuberkulose gestorben. Heute können wir solche Krankheiten mit Antibiotika wie Penicillin bekämpfen. Weil das Penicillin so wichtig ist, erhielt Alexander Fleming zusammen mit Howard Florey und Ernst Chain im Jahr 1945 den Nobelpreis für Medizin.
Der erste Mensch, der jemals mit Penicillin behandelt wurde, war übrigens ein 43-jähriger Polizist aus London, der sich beim Rasieren geschnitten und sich an der infizierten Wunde eine Blutvergiftung zugezogen hatte. Tatsächlich war das Fieber nach 5 Tagen verschwunden, doch weil die Penicillinvorräte aufgebraucht waren, konnte die Behandlung nicht fortgesetzt werden und der Mann verstarb nach einem Monat. Während des inzwischen tobenden 2. Weltkrieges interessierten sich die amerikanischen Streitkräfte sehr für das neue Medikament. Ab 1944 erfolgte die großtechnische Produktion des Penicillins für die US-amerikanischen Streitkräfte. Erst ab März 1945 konnten es auch Zivilisten auf Rezept in amerikanischen Drugstores kaufen.

3. Bakterienresistenzen sind ein natürliches Phänomen.

Einfaches RGB

Wirkstoffe aus Streptomyceten können Bakterien abtöten – hier sichtbar als klare Hemmhöfe im Bakterienrasen, Fotomontage (@Hildgund Schrempf)

Die grundsätzlichen Ursachen für Antibiotika-Resistenzen liegen in der Evolution. Seit rund zwei Milliarden Jahren existieren Bakterien auf der Erde – in denen sie fortwährend mutieren und neue Abwehrmechanismen gegen Bedrohungen entwickeln. Sie vermehren sich in ungeheurer Geschwindigkeit und Anzahl. So bringen sie immer wieder neue Varianten hervor – auch solche, die mit Giften besser umgehen können als ihre Vorfahren. Sie können ihren Stoffwechsel umstellen, Schutzmechanismen aktivieren und Resistenzgene austauschen. Dabei können sich die Resistenzgene über besondere Austauschmechanismen auch auf andere Mikrobenstämme verbreiten.
Ist der Antibiotika-Einsatz wie in Kliniken hoch, genießen resistente Erreger einen Überlebensvorteil vor ihren Artgenossen und vermehren sich besonders gut. Um zu verhindern, dass eines Tages keine wirksamen Antibiotika mehr zur Bekämpfung von lebensbedrohlichen bakteriellen Infektionen zur Verfügung stehen, müssen wir verantwortungsvoll mit diesen wichtigen und oft lebensrettenden Arzneimitteln umgehen.

4. Antibiotika-Resistenzen nehmen zu.

Antibiotika waren lange Zeit ein verlässliches Mittel, um Infektionen zu bekämpfen, doch das hat sich geändert. Multiresistente Keime in Krankenhäusern nehmen zu. Sie stellen ein immer ernster werdendes und vor allem globales Problem dar. Eine britische Studie schätzt, dass jedes Jahr bis zu 700.000 Menschen weltweit an resistenten Bakterieninfektionen sterben. Bezogen auf Deutschland sind das etwa 6000 Todesfälle. Der Grund: Oft wird Antibiotika eingenommen, obwohl eine Virusinfektion vorliegt. Bei dieser sind Antibiotika nutzlos. Trotzdem verlangen viele Menschen, die zum Beispiel mit einer Erkältung oder einer Grippe zum Arzt gehen, dass dieser ihnen Antibiotika verschreiben solle. Manche Ärzte verschreiben daraufhin das Medikament, um die Erkrankten zu beruhigen. Aber dieses Verhalten fördert Resistenzen der Bakterien gegen Antibiotika. 80 bis 90 Prozent aller Antibiotika werden im Rahmen der ärztlichen Grundversorgung verordnet, vorwiegend für Atemwegsinfektionen. Etwa 50 Millionen Antibiotika werden jährlich unnötigerweise verscheriben. Ein faktor der die Resistenzentwicklung fördert. Wenn Antibiotika nicht mehr wirken, können harmlose Operationen wie beispielsweise eine Zahn- oder Gelenkoperation, Chemotherapien bei Krebs oder die Versorgung von Frühchen sehr schwierig werden.

5. Wie verbreiten sich Antibiotikaresistenzen?

Dazu gibt hier ein sehr gutes Schaubild des European Center für Disease Prevention and Control (ECDC ).

How does antibiotic resistance spread?

Verbreitung von Antibiotika-Resistenzen (Quelle ECDC)

6. Alte Wirkstofftypen bei Antibiotika von 1930 bis 1960

Ob bei Bakterien, die Lungenentzündungen hervorrufen können oder Tuberkulose, ihre Resistenzen gegen Antibiotika werden zur Bedrohung für den Menschen. Im Wettlauf mit den Mikroben wird nach neuen Antibiotika geforscht. Denn fast alle heutigen Antibiotika gehen auf die Wirkstofftypen zurück, die zwischen 1930 und 1960 entdeckt wurden. Obwohl die Genome sämtlicher wichtiger Krankheitserreger bekannt sind, hat das noch zu keinem nennenswerten Fortschritt in der Entwicklung von Antibiotika geführt. Neue Wirkstoffe weden dringend gebraucht!

7. Neue Antibiotika aus Naturstoffen

Viele Pharmaunternehmen haben sich aus der aufwändigen und kostspieligen Forschung zurückgezogen. Denn Antibiotika werden im akuten Fall immer nur kurzfristig verabreicht. Es lässt sich damit also nicht so viel Geld verdienen wie mit Medikamenten, deren Einnahme dauerhaft notwendig ist. Vor allem kleine und mittlere Unternehmen müssen zukünftig bei der Entwicklung neuer Antibiotika unterstützt werden und eng mit der Grundlagenforschung an Universitäten und außeruniversitären Forschungseinrichtungen zusammenarbeiten.

agarplatten-mit-myxobakterien

Agarplatten mit Myxobakterien, die antibiotische Wirkstoffe bilden (Quelle: HZI Braunschweig)

Chancen für neue Antibiotika sehen Forscher beispielsweise in Naturstoffen. Manchmal bilden Mikroorganismen sehr interessante Resistenzen aus. Etwa 80 Prozent der Antibiotika stammen aus der Natur. Eine schier unerschöpfliche Quelle für neue Wirkstoffe bilden etwa Pilze. Sie produzieren Antibiotika natürlicherweise, um sich gegen Bakterien durchzusetzen und deren Angriffe zu überleben. Gerade bei den Pilzen sieht man durch molekularökologische Untersuchungen, wie groß ihre Vielfalt ist. Man schätzt, dass es bis zu fünf Millionen Arten gibt. Wissenschaftlich beschrieben sind erst rund 100.000. Die Herausforderung ist nun, dass man diese Organismen für die Forschung zugänglich macht. (Helmholtz-Zentrum für Infektionsforschung Braunschweig).

8. Gemeinsam im Kampf gegen Antibiotika-Resistenzen

Doch nicht nur die Entwicklung neuer Wirkstoffe verhindert aufkommende Antibiotika-Resistenzen. Auch der Umgang mit bisher verwendeten Medikamenten muss überdacht und verändert werden. Wenn Antibiotika dort verwendet werden, wo sie nicht unbedingt notwendig sind, steigt das Risiko für Resistenzen unnötig. Einen Lösungsansatz, um den zu verschwenderischen Einsatz von Antibiotika einzudämmen, könnte die internationalen „One Health“-Initiative sein, die verschiedene Beteiligte an einen Tisch bringt, wie Humanmediziner und landwirtschaftliche Anwender von Antibiotika. (Deutsche Antibiotika-Resistenzstrategie der Bundesregierung (DART 2020)

9. Was kannst Du tun, damit Antibiotika auch in Zukunft wirksam bleiben?

Durch eine verantwortungsvolle Anwendung von Antibiotika können Resistenzen vermieden werden. Auch Du kannst mithelfen!

who_volkov

Bildquelle: WHO/ Volkov

  •  Nimm Antibiotika nur nach Verschreibung durch den Arzt ein.
  • Nimm die Medikamente immer so lange und in der Dosis ein, die der Arzt empfohlen hat.
  • Heb keine Reste von Antibiotika für eine nächste Infektion auf.
  • Gib Antibiotika, die der Arzt dir verordnet hat, nicht an andere Patienten weiter.
  • Entsorge die Antibiotika nicht über die Toilette oder das Waschbecken. Gib sie in den Hausmüll, so werden sie rückstandlos verbrannt. Wenn Antibiotika in das Abwasser gelangen, verbreiten sich die Substanzen in die Umwelt und Resistenzen werden gefördert. Apotheken bieten außerdem einen kostenlosen Rücknahmeservice für Medikamente an.
  • Vermeide Infektionen so gut wie möglich. Oft helfen schon einfache Hygienemaßnahmen wie Händewaschen.

 

10. Wie kannst Du Dich vor Infektionen schützen?

  • Lass Dich gegen Infektionskrankheiten impfen. Die Schutzimpfung gegen Grippe (saisonale Influenza) sollte jährlich wiederholt werden.
  • Wasch Dir mehrmals täglich die Hände mit Wasser und Seife für etwa 30 Sekunden, auch zwischen den Fingern. Händewaschen ist Pflicht nach jedem Toilettenbesuch, vor jeder Mahlzeit sowie nach dem Kontakt mit Tieren und rohem Fleisch.
  • Putze Dir die Nase mit Einmaltaschentüchern und entsorge Sie diese anschließend schnell. Wasch Dir auch nach dem Naseputzen die Hände.
  • Huste oder niese nicht in die Hand, sondern in die Armbeuge. Halte dabei möglichst großen Abstand zu anderen Menschen.
  • Berühre Dein Gesicht möglichst wenig mit den Händen.
  • Lüfte mehrmals täglich. Am besten das Fenster für einige Minuten komplett öffnen. Das sorgt für ein besseres Raumklima.

Komm gut durch die Erkältungszeit!

Wenn Du noch mehr über Antibiotikaresistenzen im Blog lesen möchtest – dann findest Du hier noch mehr Lesestoff.

Mikrobiologische Grüße

Susanne


Ein Kommentar

Salmonella Typhi – Kein Typ zum Kuscheln!

2_55919c4a71

Computergenerierte 3D-Darstellung von Salmonella Typhi-Bakterien, die Typhus auslösen. Das flauschige Aussehen der Bakterien entsteht durch die kurzen dünnen Pili an der Oberfläche. Auffällig sind auch die Geißeln, mit denen sich die Bakterien fortbewegen können. Quelle: U.S. Centers for Disease Control and Prevention – Medical Illustrator (CC0)

Mikrobe des Monats 6/2016 :  Es wird Sommer und Salmonellen-Vergiftungen machen wieder regelmäßig Schlagzeilen. Die Medien berichten jedes Jahr in den warmen Monaten über gehäufte Durchfallerkrankungen in Altenheimen oder Krankenhäusern, die durch eine Infektion mit Salmonellen ausgelöst werden. Die Infektionsquelle ist meist in Lebensmitteln zu finden. Besonders gefährlich sind ungekochte Fleischwaren wie Tatar, Hackfleisch, Mettwurst und Huhn sowie Muscheln, Eier, Speiseeis und Mayonnaise. Diese müssen ausreichend gekühlt und innerhalb ein bis zwei Tagen verzehrt werden. Großküchen haben da anscheinend manchmal Probleme oder auch nach Straßen- oder Volksfesten treten gern mal Salmonellen-Vergiftungen auf.

Salmonellen als Überlebenskünstler

Daniel_Salmon

Namensgeber der Salmonellen: Tierarzt Daniel Elmer Salmon (Wikimedia Commons)

Die kleinen, stäbchenförmige Bakterien, die solche Magen-Darm-Infektionen (Salmonellosen) verursachen können sind wahre Überlebenskünstler. Ihr natürlicher Lebensraum ist der Magen-Darm-Trakt von verschiedensten Tieren, seltener auch von Menschen. Sie vermehren sich bei Temperaturen von 10 bis 47 Grad Celcius und können aber auch in der Umwelt, auf verschiedenen Lebensmitteln, in Pflanzen und eingetrocknet für Jahre überleben. Selbst bei Temperaturen unter dem Gefrierpunkt sterben sie nicht ab. Abtöten kann man Salmonellen, indem man sie für mindestens zehn Minuten bei über 70 Grad Celsius erhitzt.

Benannt wurden die Bakterien übrigens nach dem US-amerikanischen Tierarzt Daniel Elmer Salmon, der den Erreger der sogenannten „Schweinecholera“ 1885 isolierte.

Viele Typen von Salmonellen

Die Salmonellen bilden eine große Gruppe innerhalb der Bakterien. Für den Durchfall sind fast immer Vertreter der Untergruppe Salmonella (S.) enterica verantwortlich. Unbedingt zu unterscheiden von den hierzulande auftretenden Salmonellen- Infektionen ist der Typhus, der ebenfalls durch Salmonellen hervorgerufen wird (S. Typhi), der bis auf eingeschleppte Reiseinfektionen in Deutschland eine geringe Bedeutung hat. Und um Salmonella Typhi, diesen eher unangenehmen Vertreter der Gattung, geht es hier.

Salmonella Typhi – Von Mensch zu Mensch

Eine Infektion mit S. Typhi erfolgt primär über den Menschen, also durch bereits erkrankte Personen oder sogenannte „Dauerausscheider“ – das sind erkrankte Personen, bei denen das Bakterium nach zehn Wochen immer noch nachweisbar ist. Bei diesen infizierten Personen müssen keine Symptome auftreten. Im Gegensatz zu den harmlosen „Durchfall-Salmonellen“, bei denen eine hohe Infektionsdosis mit 100.000-1.000.000 Bakterien nötig ist, um eine lokale Infektion des Darmes auszulösen, ist bei Salmonella Typhi schon eine bereits geringe Infektionsdosis mit 100-1.000 Erregern ausreichend.

Die Ballade von der „Typhoid Mary“

Der Typhuserreger hat die Eigenschaft, gelegentlich viele Jahre in der Gallenblase oder in den Nieren eines Patienten zu überdauern, der sich schon von der Krankheit erholt hat. Eine solche Person scheidet dann über Jahre hinweg die Mikroben an die Umwelt aus.

Mallon-Mary_01

Typhus-Mary in einer Zeitungs-Illustration von 1909 (Gemeinfrei)

In der Geschichte ist so ein unerkannter Fall einer Typhus-Infektion berühmt geworden. Der Fall der leidenschaftlichen Köchin Mary Mallon ist authentisch. Wo immer sie kochte, traten seltsame Todesfälle auf. Man nannte sie „Typhoid Mary („Typhus-Mary“), weil sie zwischen 1900 und 1907 als Köchin in New York 47 Personen mit Typhus infizierte, ohne selbst an den Symptomen der Krankheit zu leiden. Als die Auslöserin einer Typhus-Epidemie war Mary eine klassische Indexpatientin (auch Patient Null).
Den Autor J.F. Federspiel inspirierte die Begebenheit dazu die halberfundene und sehr dramatische Erzählung „ The Ballad of Typhoid Mary“ über eine der berühmtesten Trägerinnen von Salmonella Typhi im Jahre 1982 zu veröffentlichen. Die Geschichte hat auch heute nichts von ihrer Aktualität verloren.

Antibiotikaresistente Salmonellenstämme

Heute stellen die schweren Infektionen mit Salmonella Typhi wieder eine neue Herausforderung dar. Ihre Behandlung wird immer mehr zu einem Problem. Denn auch Bakterien vom Typ Salmonella haben inzwischen Resistenzen gegen diverse Antibiotika entwickelt. Seit Anfang der 90er Jahre tauchten in Asien und Afrika immer häufiger multiresistente Salmonellenstämme auf, denen die gängigen Antibiotika wie Ampicillin oder Chloramphenicol nichts mehr anhaben konnten. Die WHO empfahl daraufhin, Antibiotika der dritten Generation einzusetzen, wie das Ciprofloxacin aus der Gruppe der Fluorchinolone.

In einer Studie in Ghana untersuchten die Wissenschaftler, ob dieses neue Antibiotikum dort auch bereits Resistenzen ausgelöst hat. Die Ergebnisse der Studie sind eine erste Warnung: In einigen Varianten von Salmonellen konnte eine  verminderte Empfindlichkeit auf Ciprofloxacin nachgewiesen werden; bei einem Serotyp war bereits die Hälfte der Isolate betroffen. Der Typhus-Erreger Salmonella Typhi wies bei diesen Isolaten noch keine verminderte Empfindlichkeit auf. Eine länderübergreifende Untersuchung zeigte aber auch für Salmonella Typhi bereits eine reduzierte Empfindlichkeit für Ciprofloxacin; besonders hoch war das Vorkommen in Kenia. Das wäre insofern bedenklich, als Ciprofloxacin häufiger eingesetzt werden wird, wenn die Kosten sinken, meinten die Forscher. Wenn die Salmonellen im Blut nicht mehr mit den neuen Antibiotika wie Ciprofloxacin in den Griff zu bekommen sind, wäre das ein großes Problem für die betroffenen Länder.

Quelle: Deutsches Zentrum für Infektionsforschung

Über Kommentare oder Ergänzungen freue ich mich…

Mikrobiologische Grüße

Susanne