Mikrobenzirkus

Keine Panik vor Bazille, Virus & Co


1 Kommentar

Fliegentaxi für Bakterien

Bssssssssssssss…! Da ist es wieder­ – dieses Geräusch.

Plötzlich ist es zu hören, wie aus dem Nichts – in der Küche oder im Wohnzimmer. Nur wenige mögen es. Fliegen gehören nicht zu den beliebtesten Kreaturen dieser Welt. Da hilft es auch nicht, dass sie Superman-Fähigkeiten haben: wie an der Decke zu laufen oder einen eingebauten Rundumblick mit ihren „Mosaikaugen“. Habt ihr schon mal versucht, eine Fliege mit der Hand zu fangen? Es ist fast unmöglich. Egal ob man sich von hinten anschleicht oder besonders überraschend zuschlägt: Die Fliege sieht alles und ist meist schneller.

Das Image der Stuben- oder der Schmeißfliege ist aus verschiedenen Gründen nicht das Beste. Sie nerven uns mit ihrem Summen und Brummen und „bekrabbeln“ alles – völlig egal in welcher Reihenfolge – von der Klobrille bis zum Mittagessen.

Blow-flies

Schmeißfliegen auf frischem Hühnerkot, Quelle soebe, Lizenz: GNU-FDL

Vor allem die grünschillernden Schmeißfliegen, deren Name aus dem Altdeutschen kommt und so viel wie „besudeln“ und „beschmieren“ meint – entlocken uns Ekelgefühle. Der Kontakt mit Fliegen galt schon immer als unrein und Mediziner warnten vor ihnen als Krankheitsüberträger.

Nicht ganz zu Unrecht, wie Forscher in der Fachzeitschrift „Scientific Reports“ berichteten. Die Brummer wurden bisher als Überträger von Erregern völlig unterschätzt! Auch unsere gemeine Stubenfliege mit ihren rötlichen Facettenaugen, ihrem haarigen Körper und dem Saugrüssel, der alles abtastet – ist nicht so harmlos, wie sie manchmal wirkt.

Bakterien reisen auf Fliegen

Welche Krankheitserreger die Fliegen nun wirklich übertragen, darüber wussten die Forscher bisher sehr wenig. Die brasilianische Genetikerin Ana Carolina Junqqeira von der Staatlichen Universität in Rio de Janeiro hat mit 16 anderen Forschern diese Wissenslücke geschlossen.

housefly-2659795_1920

Stubenfliege (CC0 Lizenz)

Dazu fingen sie 116 frei lebende Fliegen auf drei Kontinenten –in den USA, Brasilien und Singapur – und analysierten deren Erbgut. Die Ergebnisse übertragen die Erwartungen der Forscher völlig. Auf Schmeißfliegen fanden die „Fliegenjäger“ 316 und auf den Stubenkollegen sogar 351 unterschiedliche Bakterienarten. Einzelne Brummer-Exemplare hatten mehr als 200 Keimspezies im Gepäck. Während die von den Forschern untersuchte Art von Schmeißfliegen Chrysomya megacephala in Deutschland nicht vorkommt, gibt es Stubenfliegen (Musca domestica) beinahe überall auf der Welt – auch in Mitteleuropa.

Die lästigen Insekten lasen sich gern auf der Haut von Menschen nieder, weil sie dort Nahrung finden – winzige Hautschuppen beispielsweise. Vor allem mögen sie Schweiß, der Proteine enthält: ein Grund warum schwitzende Menschen wie Jogger oder Urlauber am Strand besonders viele Fliegen anlocken. Das alles wäre auch gar nicht schlimm, da Fliegen nicht stechen und Blut saugen wie Malariamücken. Allerdings hegen die Tiere eine besondere Vorliebe für alle Arten menschlicher und tiersicher Körperausscheidungen, wie Kot oder Eiter und anderes wenig Appetitliches. Den Weg weist ihnen dabei der Geruch von Buttersäure – eine Substanz, die bei den meisten Fäulnisprozessen entsteht und den die Fliegen riechen können.

Fliegenlarve

Larve einer Stubenfliege Foto: Paul Krok, Lizenz: CC BY-SA 3.0

Dazu legen die Weibchen ihre Eier bevorzugt an – aus menschlicher Sicht – besonders abstoßenden Orten ab. Hauptsache, es handelt sich um organisches Material, das sich gerade schon zersetzt oder vor sich hin fault. Da sind sie nicht besonders wählerisch: einerlei ob verdorbene Nahrungsmittel, Müll, Exkrement oder ein Kadaver. Die kopf- und beinlosen Fliegenlarven, die aus den Eiern schlüpfen und die verschiedene Stadien bis zum fertigen Insekt durchlaufen, fressen alles. Stellen Sie sich also lieber nicht genau vor, was die Fliege gerade so hinter sich gebracht hat, die sich gerade auf ihrem Käsebrötchen niederlässt.

„Unsere Studie hat gezeigt, dass Bakterien fliegen können, wenn sie mit herkömmlichen Fliegen reisen“, sagt Prof. Stephan Schuster von der NTU Singapur. Die Keime nutzen die Brummer quasi als Taxi.

Die Forscher berichten in ihrer Studie, dass die Fliegen das Mikrobiom an ihren Füßen aufnehmen, es auf ähnliche Weise über ihre Flügel streuen, wie wir unser Haare kämmen und es dann auf den Oberflächen verteilen, auf denen sie landen. Mit jedem Schritt hinterlassen die Insekten dabei ein „Kolonialisierungsspur“. Wobei sich das Mikrobiom vor allem an ihren Beinen befindet. Nicht weiter verwunderlich, da diese Körperteile am häufigsten Kontakt mit Aas, Kot und anderen „Fliegenleckereien“ haben.

Zu den mikrobiellen Reisegästen der Fliegen zählen Krankheitserreger wie Escherichia coli (Darm- und Harnwegsinfektionen) oder Klebsiella pneumoniae (Lungenentzündungen). Die brasilianischen Fliegen trugen sogar das Bakterium Helicobacter pylory, für den bisher ein solcher „Flugtransport“ für unmöglich gehalten wurden. Etwa die Hälfte aller gefundenen Bakterienarten kamen sowohl bei Stuben- als auch bei Schmeißfliegen vor – was auf ihre gemeinsamen Nahrungsvorlieben zurückzuführen ist.

Unterschied zwischen „Dorf-Brummer“ und „City-Brummer“

Von einer Vorstellung solltet ihr euch aber schnellstens verabschieden: Nicht dort, wo es am meisten summt und brummt, sind die meisten Keime und das nächste Infektionsrisiko. Es gibt einen großen Stadt-Land-Unterschied in der Keimbelastung der Insekten.
Die Fliegenhorde im Stall eines Bauernhofes ist weit weniger mit, für den Menschen bedrohlichen, Erregern belastet als der verirrte Stadtbrummer. Die Forscher vermuten, dass sich die Fliegen dort in offenen Latrinen oder Sickergruben mit den Keimen beladen. Die „Citybrummer“ reisen dann direkt vom gelben Müllsack in das nächste pieksaubere Wohnzimmer samt ihren Mikrobenmitbringseln. Das sollten Sie vielleicht beim nächsten Ausflug bedenken und eher eine Waldlichtung las den Stadtpark wählen.

Insektenspray ist unnötig

Panik und ein übereilter Griff zum Insektenspray sind aber nicht nötig. Im Vergleich haben die umherkrabbelnden Insekten ein viel geringeres Infektionsrisiko als beispielsweise eine Zecke, die sich gezielt in der Haut verbeißt. Großräumige Bekämpfung würde außerdem auch eine schnelle Resistenzausbildung gegen die Insektizide zur Folge haben.
Im Normalfall regelt sich alles von selbst – die Population der Fliegen wird durch ihre natürlichen Fressfeinde eingedämmt. Um aber zu meiden, dass sie sich in eurer Wohnung zu heimisch fühlen, solltet ihr euch an die üblichen Hygienestandards und einen sauberen Umgang mit Abfallprodukten halten.

Fliegen sind wichtig in der Natur

Trotz eines gewissen „Ekelfaktors“ dieser Studie, sehen die Biologen auch ganz positive Nebenaspekte. Die Fliegen sind ganz natürliche Bioindikatoren. Durch ihre geringe Größe können die Fliegen in kleinste Risse und Spalten vordringen, die für Menschen nicht zugänglich sind. Anhand der speziellen Bakterienbeladung – der vorher keimfreien „Minidrohnen“ – könnten so versteckte Keimherde aufgespürt werden.

Auch wenn die Fliegen in dieser Studie etwas schlechter als Keimüberträger wegkommen, sind sie trotzdem ein sehr wichtiger Teil des Ökosystems. Sie bestäuben Pflanzen, ihre Larven leben von Faulstoffen, wie Aas oder Kot. Ohne derartige Helfer würden wir in den Großstädten im Hundekot ersticken! Sie helfen sogar dabei, in der Gerichtsmedizin Verbrechen aufzuklären. Und nicht zuletzt müssen wir auch darüber nachdenken, dass sie eine Proteinquelle gegen den Hunger in der Welt sein können – als Tierfutter sind sie sogar schon erschlossen.

Mikrobiologische Grüße

Susanne

Literatur zum Lesen:

The Habitats Humans Provide: Factors affecting the diversity and composition of arthropods in houses: https://www.nature.com/articles/s41598-017-15584-2

The microbiomes of blowflies and houseflies as bacterial transmission reservoirs https://www.nature.com/articles/s41598-017-16353-x.pdf

Hinterlasst mir gern einen Kommentar!

    [wpgdprc "Mit der Nutzung dieses Formulars erklärst du dich mit der Speicherung und Verarbeitung deiner Daten durch diese Website einverstanden."]


    1 Kommentar

    Wie Bakterien Schnee machen

    pixabay_plant-1160731_1280

    An der Schneebildung können auch Mikrorganismen beteiligt sein. (Pixabay)

    Draußen wird das Wetter jetzt im Dezember zunehmend frostiger. An Fensterscheiben erscheinen Eisblumen wie hingemalt und weißer Raureif überpudert morgens die Pflanzen im Garten. Der erste Schnee ist nicht mehr weit. Man kann ihn schon riechen.

    Schneeflocken sind übrigens keineswegs nur einfach Kristalle aus reinem Wasser – eingefroren in einer wunderschönen geometrischen Grundstruktur. Auch bei ihrer Entstehung können überraschenderweise Mikroorganismen beteiligt sein. Bakterien und andere winzige Organismen tragen viel stärker als vermutet in unserer Atmosphäre zur Bildung von Schnee und Regen bei. Das erkannten Forscher der Louisiana State University in Baton Rouge im Wissenschaftsmagazin „Science“ schon im Jahre 2008, nachdem sie Schneeproben aus 19 unterschiedlichen Regionen der Welt untersucht hatten.

    Bakterien für große Schneeflocken

    pixabay_star-1562803_1920

    Eiskristalle (Pixabay)

    Damit Eiskristalle wachsen können, braucht es einen kleinen Anstoß. Bei einer Schneeflocke genügen schon in der Luft umherschwirrende Teilchen, die Aerosole oder Eiskeime. Das können anorganische Stoffe, wie Staubkörner, Salze sein oder auch organische Aerosole wie Mikroorganismen, Pollen, Algen, Pilzsporen, Bakterien oder Viren. An diese „Kristallisationskeime“ lagern sich winzige Wassermoleküle an. So entstehen in den Wolken Wassertröpfchen, die später als Niederschlag zur Erde fallen. Bei Temperaturen unter Null bilden sich statt der Wassertropfen winzige Eiskristalle. Die Wassermoleküle lagern sich dann in bestimmten Winkeln aneinander an. Nach und nach entstehen Prismen, Säulen, Plättchen, Nadeln oder Sterne. Schneekristalle sind in der Regel sechseckig. Es gibt unzählige Möglichkeiten, wie sie sich zusammensetzen können. Daher geht man auch davon aus, dass Eiskristalle einzigartig sind. Schnee entsteht, wenn viele der Eiskristalle aneinander klebenbleiben.

    Schneeflocken können übrigens sehr groß werden – bis zu 20 Zentimeter. Man spricht dann von „Pfannkuchen-Schnee“. Ins Guinessbuch der Rekorde hat es eine sogar 38 Zentimeter große Schneeflocke geschafft. Normalerweise werden Schneeflocken aber nur wenige Millimeter dick und sind federleicht. Eine fünf Millimeter breite Flocke wiegt nur vier tausendstel Gramm.

    Die Schneeflocken mit organischen Eiskeimen sind meist größer als solche mit Staubkörnern. Das hat einen ganz einfachen Grund: Organische Eiskerne, wie beispielsweise Bakterien, haben ein viel größeres Volumen als Staubkörner. Umso mehr Platz haben logischerweise auch die Wassermoleküle, die hier andocken können. Weitere Wassermoleküle werden außerdem noch angezogen, wenn im Kern schon viel Wasser gespeichert ist. So können biologische Eiskeime selbst bei relativ hohen Temperaturen die Bildung von Schneekristallen auslösen.

    Schneebakterium Pseudomonas syringae

    Schnelle Berühmtheit als ein eisaktives Bakterium hat Pseudomonas syringae erlangt. Es löst schon bei minus zwei Grad Celsius die Eisbildung in Wassertropfen aus. Zum Vergleich: Enthalten Wassertropfen nur Mineralstaub oder Ruß als Kondensationskeime für die Eiskristallbildung, setzt der Gefrierprozess erst ab Temperaturen von etwa minus 15 Grad Celsius ein. Das Schneebakterium sorgt also gefährlich schnell für Schnee. Das ist natürlich einerseits für Betreiber von Schneekanonen für schneearme Skipisten sehr interessant. Andererseits kann der Mikroorganismus an Pflanzen, auf denen er siedelt, unschöne Frostschäden verursachen.

    Aber wieso ist das Bakterium eigentlich ein Gefrierbeschleuniger? Das konnte Anfang 2016 ein Wissenschaftlerteam des Max-Planck-Instituts für Polymerforschung in Mainz aufklären. Sie analysierten die Oberfläche des Bakteriums und fanden als Ursache bestimmte Proteinmoleküle an der Bakterienoberfläche. Dadurch sind die Bakterien in der Lage, den Ordnungszustand und die Dynamik von Wassermolekülen in Wassertröpfchen beeinflussen zu können – durch Wechselwirkung mit bestimmten Aminosäuresequenzen. Zudem nehmen die Proteine Wärmeenergie aus dem Wasser auf und leiten sie weiter in das Bakterium. Dadurch können sich die Wassermoleküle schneller zu einem Eiskristall zusammen lagern.

    Schneekanone auf der grünen Wiese

    Die eisbildenden Eigenschaften von Pseudomonas syringae kommen bei der Snowmax-Methode, bei der bei Plusgraden Schnee auf den Skipisten erzeugt wird, zum Einsatz. Man nutzt dabei abgetötete Pseudomonas-Bakterien. Ihr Eiweiß lässt Wasser auch bei plus fünf Grad Celsius zu schneeähnlichem Pulver werden. Bei minus drei Grad entsteht ein pulvrig weißer Schnee, den man auch als „Technischen Schnee“ bezeichnet. In USA werden schon ganze Ski- gebiete damit beschneit, in der Schweiz ist dies teilweise auch möglich. In Österreich und Deutschland ist die Snowmax-Methode verboten. Hier darf bisher nur reines Wasser ohne chemische oder bakterielle Zusätze zum Beschneien verwendet werden. Wenn die Wintertemperaturen so hoch bleiben, wird man wohl auch in Deutschland nochmal über das Schneebakterium nachdenken.

    Schneemann Challenge

    Aber zuerst geben wir diesem Winter eine Chance. Für meine Zwecke zum Rodeln und Schneemannbauen reicht das normale Schneeaufkommen in Niedersachsen meist aus. Und bis zum Welttag des Schneemanns am 18. Januar ist auch noch etwas Zeit. Na hoffentlich hält sich das Wetter dran! Ansonsten wissen wir nun, wie es funktioniert.

    schneemann_dsc_0721

    Schneemann und unser Kater Kasper (S. Thiele)

     

    Mikrobiologische Grüße

    Susanne


    3 Kommentare

    Warum duftet Erde eigentlich erdig?

    img_2085

    Gartenboden im November (S. Thiele)

    Jetzt im grauen November steigen uns oft modrige-erdige Gerüche in die Nase. Besonders Waldboden hat nach dem Regen einen sehr typischen Duft. Wo kommt der eigentlich her?

    Das Phänomen wurde 1964 als „Petrichor“ beschrieben und zunächst auf anorganische Materialien zurückgeführt. Heute weiß man, dass der „erdige“ Geruch durch fleißige Bodenbakterien, Streptomyzeten oder Myxobakterien, verursacht wird. Sie produzieren einen Alkokol, der uns ganz typisch an den Duft von Erde erinnert. Die bizyklische Verbindung heißt Geosmin.

    geosmin-jpg

    Dieser Alkohol riecht nach „Walderde“. Wir Menschen können diesen Duftstoff sehr gut wahrnehmen. Unser Geruchssinn reagiert auf Geosmin hochsensibel, die Geruchsschwelle liegt bei 0,1 ppb (parts per billion). Das bedeutet, dass wir ein Geosmin-Molekül sogar unter 10 Milliarden Luftmolekülen „erschnuppern“ können.

    Bei Trockenheit riechen wir aber gar nichts, weil dann auch die Bodenbakterien inaktiv sind und ruhen. Regnet es aber, schmeißen die Bakterien ihren Stoffwechsel wieder an und die intensiven Düfte umwehen unsere Nasen.

    Die Geosminproduzenten, die Streptomyzeten (Mikrobe des Jahres 2016), sind übrigens ganz eigenartige Bakterien. Sie wachsen mycelartig die Pilze und bilden fädige Pilzfäden, im Fachjargon als Hyphen bezeichnet. Deshalb hat man diese Mikroorganismen auch lange zu den Pilzen gezählt. Heute ist man schlauer und weiß, dass es sich um weitverbreitete Gram-positive Bakterien handelt. Sie leben zwar im Waldboden, brauchen aber trotzdem Luft zum Wachsen und sind damit aerobe Mikroorganismen.

    Manchmal bemerken wir die „erdigen“ Düften auch an Lebensmitteln oder anderen Orten. Erdige Gerüche beim Wein deuten zum Beispiel auf einen Weinfehler hin. Hier wird der Duft durch bestimmte Schimmelpilze erzeugt, wenn die Reben von der Grauschimmelfäule (Botrytis cinerea) befallen waren.

    rote_beete_public-domain

    Rote Beete hat durch Geosmin ein erdiges Aroma (Quelle: Public Domain)

    Auch Rote Bete (Beta vulgaris) riecht etwas erdig. Das liegt ebenfalls am Geosmin und macht das besondere Aroma der roten Knolle aus. An deren Schale haftet trotz guter Reinigung immer noch viel Erde an. Wenn die Knolle dann geschält wird, gelangt Geosmin in den Knollensaft bzw. ins Knollengewebe.

    Da Menschen erfahrungsgemäß auf Geosmin sehr positiv regieren, setzen besonders findige Marketingstrategen den „frischen Duft nach Regen“ auch gern kommerziell ein z.B. als Raumparfüm in Outdoorgeschäften für Naturliebhaber. Das Bakterienparfüm animiert uns dann zum ausgiebigen Shoppen.

    Mikrobiologische Grüße

    Susanne


    2 Kommentare

    Mikrobenzirkus meets Stadt-Land-Food-Festival 2016 Berlin

    mikrobenzirkus-meets-stadtlandfood

    Heute mal ein Veranstaltungstipp in eigener Sache. In der nächsten Woche könnt ihr mich live mit einem Vortrag beim Stadt-Land Food-Festival 2016 in Berlin erleben.

    Vom 1. bis zum 3. Oktober 2016 findet im Kreuzberger Kiez rund um die Markthalle Neun dieses besondere Festival statt – als Bühne für bäuerliche Landwirtschaft, handwerkliche Lebensmittelproduktion,  die Plattform für politischen Dialog und innovative Kochkultur – wie die Veranstalter auf der Seite http://stadtlandfood.com/ schreiben.

    Auf Einladung von Cathrin Brandes und Olaf Schnelle bin ich Bestandteil eines bunten Programms in der „Werkstatt Gemüse“. Mit dem Vortrag

    „Eine Portion Mikroben, bitte! Warum wir freundliche Mikroben brauchen“

    werde ich etwas über das angespannte Verhältnis von Menschen und Bakterien erzählen und warum wir ohne unsere Mikroben eigentlich gar nicht existieren könnten.

    Hier zur Vortragsankündigung am

    Sonntag, den 2.Oktober von 16 – 17 Uhr in der Markthalle Neun, Werktstatt Gemüse, Eisenbahnstraße 42/43 in 10997 Berlin

    Mikroben haben ein schlechtes Image – völlig ungerechterweise. Von etwa 10.000 heute bekannten Bakterienarten sind nur etwa 550 gefährliche Krankheitserreger. Die anderen leben friedlich mit und auf uns und in unserer Umwelt. Die meisten der Winzlinge sind harmlos und sogar gesund für uns. Kommen Sie mit auf eine spannende Expedition in den unsichtbaren Dschungel unserer Mikrobenwelt!

    Die Werkstatt Gemüse wird sich hauptsächlich dem spannenden Thema Fermentation beschäftigen. Denn diese uralte Methode der Haltbarmachung ist zu sehr in Vergessenheit geraten. Selbst im Land des Sauerkrauts macht kaum einer noch selbst Sauerkraut ein, ganz zu schweigen von Salzgurken oder sauren Bohnen. Die Kuratoren der Werkstatt Gemüse haben sich auf die Fahnen geschrieben, diesen drohenden kulinarischen Kulturverlust abzuwenden und jedermann wieder für die Fermentation zu begeistern. In Tastings, Workshops und Vorträgen wird gezeigt, wie es geht, wie es schmeckt und warum es so gesund ist. Vom Krauthobeln, über das Ansetzen von Kimchi bis hin zu japanischen Fermentationstechniken. Hier wird geblubbert und gegärt!

    fermentationsworkshop_stadt_land_food_festival

    Fermentationsworkshops (Stadt Land Food-Festival)

     

    Zum Thema Fermentation hatte ich hier im Blog für Interessierte auch schon mal etwas geschrieben.

    Vielleicht sehen wir uns nächste Woche in Berlin?

    Mikrobiologische Grüße

    Susanne

     


    Leave a comment

    Schimmelpilze als mikrobielle Bioböller

    Pilobolus_crystallinus_002 wikimedia

    Pilobus spec. ein Kot-liebender Schimmelpilz, der seine Sporen bis zu 2,5 Meter weit schießt (Bildquelle:  Wikimedia Commons)

     

    Meet the Microbe 12/2015 – Ascobolus immersus, Pilobolus kleinii und Gibberella zeae

    Der Jahreswechsel wird mit der üblichen Silvesterknallerei begangen. Seit Tagen rüsten sich die Hobbyfeuerwerker in den Verkaufsstellen mit diversen Raketen und anderen Flugkörpern aus. Aber es gibt auch eine biologische Alternative und damit meine ich nicht die Bioböller aus den 90er Jahren, die sich mangels Qualm und Knall nicht zum Verkaufsschlager entwickelt haben.

    Nein, es geht um eine echte Alternative für Mikrobiologen. Ein besonderes Feuerwerk – und nur unter dem Mikroskop zu beobachten! Ohne Ohrensausen aber mit Spezialeffekten…

    Die Protagonisten sind die Pilze Ascobolus immersus, Pilobolus kleinii und Gibberella zeae. Die ersten beiden sind kleine Jochpilze mit einer Vorliebe für Kuh-Dung. Die Schimmelpilze wachsen auf dem Mist von Kühen und anderen Pflanzenfressern, den sie zersetzen. Und damit haben sie ein großes Problem. Um von ihrem Kuhfladen wieder herunterzukommen, müssen sie ihre Sporen weit weg schleudern. Die Sporen landen optimalerweise auf grünem Gras, welches wiederum von Kühen gefressen wird.

    Aber Kühe fressen verständlicherweise ungern neben ihren Exkrementen. Also haben die Pilze für die Verbreitung ihrer Sporen einen besonderen Trick entwickelt, um größere Entfernungen zu überwinden. Sie verschießen ihre Sporen mit Druck, teilweise  mit dem 180.000fachen der Erdbeschleunigung (Ascobolus immersus). Daneben sehen sogar Formel-1-Autos wie Schnecken aus.

    Wie mikroskopisch kleine Katapulte oder Wasserpistolen feuert auch Pilobolus seine Sporen in Richtung des Sonnenlichtes durch die Luft. Dazu verfügen die Pilze über ein effektives Photorezeptor-System. Die Sporen können bis zu 25 Meter pro Sekunde (90 Km/h) erreichen. Die Kraft des Pilzes ist beeindruckend. Amerikanische Wissenschaftler haben es mit Ultrahochgeschwindigkeitskameras aufgezeichnet. Diese Pilzsporen gehören wohl zu den schnellsten Flugobjekten der belebten Natur. Treibende Kraft der pilzlichen Kanoniere ist ein enormer osmotischer Druck, der sich  im Fruchtkörper aufbaut.

    Die Technik des Pilzes Pilobolus ist hier im Video als mikrobielles Feuerwerk zu bewundern – untermalt vom Amboss-Chor aus der Verdi-Oper Troubadour.

     

    Ungeschlagener Rekordhalter ist aber der Maispilz Gibberella zeae. Der Getreideschädling ist wohl der stärkste Bioböller der Erde. Er schießt mit bis zu 870.000facher Erdbeschleunigung seine Sporen aus dem Fruchtkörper. Mit bis zu 130 km/Stunde können die Sporen durch die Luft fliegen. Aber die schnellsten Pilzgeschosse fliegen nicht am weitesten. Sie landen schon nach 5 Millimetern. Da muss keiner um seine Gesundheit fürchten. Aufgrund ihrer geringen Masse werden die Sporen vom Luftwiderstand rasch gestoppt.

     

    In diesem Sinne.

    Einen guten Rutsch und auf alle guten Dinge, die uns 2016 erwarten!

    Ich freue mich über Eure Kommentare!

     

    Quellen:

    Trail et al. Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fuarium graminearum). Fungal Genet Biol. 2005 Jun;42(6):528-33.

    http://www.ncbi.nlm.nih.gov/pubmed/15878295

    Levi Yafetto et al. The Fastest Flights in Nature: High-Speed Spore Discharge Mechanisms among Fungi, 2008, DOI: 10.1371/journal.pone.0003237

    http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003237

     


    Leave a comment

    Noch bis zum 30. November läuft der Wettbewerb zur Mikrobe des Jahres 2015 – Wer findet Rhizobium?

    Die Mikrobe des Jahres 2015, die ich euch hier im Blog lange schuldig geblieben bin, heißt „Knöllchenbakterium“, mit wissenschaftlichem Namen Rhizobium. Diese Mikrobe erleichtert den Anbau von Bohnen, Erbsen, Linsen und Futtermitteln wie Klee. Die Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) kürte diesen faszinierenden Mikroorganismus am 9. Februar zur Mikrobe des Jahres 2015. Bis zum 30. November 2015 läuft noch der Wettbewerb „Findet die Mikrobe des Jahres 2015!“ für Schüler/innen und Studierende. Also Interessierte noch schnell die Unterlagen einsenden!

    Rhizobium_VAAMBakterien als natürliche Düngehilfe

    Rhizobien („in den Wurzeln lebend“) liefern bestimmten Pflanzen das für ihr Wachstum notwendige Ammonium auf natürlichem Weg und ersetzen damit künstlichen Dünger. An den Wurzeln dieser Pflanzen sind, wie auf dem Foto gut erkennbar, die typischen Knöllchen mit den Bakterien sichtbar.

    (Bildquelle: VAAM)

    Wettbewerb 2015: Wer findet Rhizobium?

    Schüler/innen und Studierende können sich am Wettbewerb „Mikrobe des Jahres 2015“ beteiligen. Schickt bis zum 30. November 2015 Fotos, Videos oder andere kreative und künstlerische Gestaltungen rund um Rhizobium an die Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) (siehe „Wie geht ihr vor?“). Ausführliche Informationen und weitere Hinweise der VAAM findet ihr hier. Also mitmachen! Es gibt tolle Preis zu gewinnen.

    Links:

    • Mehr Hintergrundinformationen zum Knöllchenbakterium allgemein findet ihr unter folgenden Link.
    • Hier noch einige schöne Videos zum Thema:

    Nitrogen Fixation – Seven Wonders of the Microbe World

    Rhizobia symbiotic relationship between legumes and rhizobia